
Intelligent Pinyin IME
Peng Wu

Content

• Pinyin IM Background
• OSS Pinyin IM Survey
• NLP-based Pinyin IM vs non-NLP
• sunpinyin vs novel-pinyin
• libpinyin - joint efforts
• libpinyin - rational
• libpinyin roadmap
• libpinyin goals

1. Pinyin IM Background

Pinyin IM Background

1. On Windows:
a. most Pinyin IME use sophisticated techniques
(such as NLP...) to improve the correction rate of
pinyin to characters conversion, without user
manually choose every Chinese word.
b. but ABC Pinyin IM (likes ibus-table) is still
there, some users refused to use new input
approach.
2. On Linux:
a. We are improving, but there are still a long
way to go.

2. OSS Pinyin IM Survey

OSS Pinyin IM Survey

1. Maximum Forward Match:
a. Fcitx
b. ibus-pinyin
2. Uni-gram(or word frequencies based.):
a. scim-pinyin
3. N-gram:
a. sunpinyin
b. novel-pinyin

Maximum Forward Match

Match steps:
1. match the first longest word and forward the
cursor,
2. repeat above steps until all pinyin has been
converted.

uni-gram

1. Statistical-based.
2. Match steps:
1. Try to find the sentence with the most frequent
words.

Concrete Example

Example: zhong'guo'ren
P(中国人 |zhong'guo'ren)
= P(中国人)
= P(中国)*P(人)
= 0.001 * 0.001
= 1e-6

Concrete Example(Cont.)

P(种果人 |zhong'guo'ren)
= P(种果人)
= P(种果)*P(人)
= 0.0001 * 0.001
= 1e-7
< 1e-6 = P(中国人 |zhong'guo'ren)
So we will choose 中国人 as a result.

n-gram

1. Use more sophisticated Statistical Math Model.
2. Match steps:
Find the most possible sentence by using
Statistical Language Model.
(n-gram will be explained later.)

3. NLP-based Pinyin IM
vs non-NLP

A hypothesis pinyin IM

1. Record all Chinese pinyin/sentence pairs in a
2TB database.
Pros:
1. Nearly 100% correction rates.
Cons:
1. No such huge disk storage to store all pinyin/
sentence pairs.
2. No such powerful CPU can do a pinyin-
sentence conversion in 1 second.

NLP-based Pinyin IM
vs non-NLP

1. non-NLP based:
Logic is simple, but have problems on
performance and correction rate.
2. NLP based:
Use mathematic models, and computing
intensive, yields more correction rates; or yields
similar correction rates with less computation
time and less disk space.

4. sunpinyin vs
novel-pinyin

sunpinyin overview

* Built on a back-off n-gram language model (3-gram)
* Supports multiple pinyin schemes (Quanpin & Double Pinyin)
* Supports fuzzy-segmentation, fuzzy-syllables, and auto-
correcting.
* Supports 2-gram history cache, or user's customized model
* Ported to various OS/platforms: iBus, XIM, MacOS
* dual-licensed with CDDL+LGPLv2.1
* Applying the acceptance of Debian, available on Ubuntu,
Fedora and Mandriva ...

sunpinyin intro

1. n-gram based algorithms.
2. Mathematic Model describes:
Try to find the maximum possibility sentence which
can pronounces the given sentence.
3. In recent 3 years, sun-pinyin has been re-
factored to easier be understood.

sunpinyin Math Model

To calculate the probability of sentence
S=(W1,W2,W3...Wn)

P(S) = P(W1).P(W2|W1).P(W3|W1,W2).P(W4|W1,W2,W3)...P(Wn|W1,W2,...Wn-1)

In reality, due to the data sparseness, it's impossible to calculate the
probability in this way. A particle method is, to assume the P(Wi|
W1,W2,...Wi-1) only depends on the previous N words, i.e., Wi-N+1,Wi-

N+2,...Wi-1.

Particularly, we have unigram (N=0 ， context-free grammar), bigram
(N=1), trigram (N=2), and fourgram (N=3). The most commonly used is
bigram, trigram.

Concrete Example

Example: zhong'guo'ren
P(中国人 |zhong'guo'ren)
= P(中国人)
= P(中国)*P(人 | 中国)
= 0.01 * 0.1
= 0.001

Concrete Example(Cont.)

P(种果人 |zhong'guo'ren)
= P(种果人)
= P(种果)*P(人 | 种果)
= 0.01 * 0.01
= 0.0001
< 0.001 = P(中国人 |zhong'guo'ren)
So we will choose 中国人 as a result.

novel-pinyin overview

* Based on an interpolation smoothing of Hidden
Markov Model. (bi-gram)
* Complete support for ShuangPin schemes, fuzzy
pinyin and incomplete pinyin, inherited from scim-
pinyin.
* Improved user input self-learning.
* Appears on some distro, SUSE, Mandriva, aur
etc.

novel-pinyin intro

1. HMM-based (Hidden Markov Model)
algorithms.
2. Mathematic Model describes:
Try to find the maximum possibility sentence
which really pronounces the given sentence.
3. Clear interface design from the beginning,
although algorithms are also complicated as
sunpinyin.

novel-pinyin Math Model

H stands for Hanzi sequences, P stands for pinyin
sequences.

P(H|P) stands for the possibility of the corresponding Hanzi
when Pinyin is given.

Math Model (Cont.)

Concrete Example

Example: zhong'guo'ren
P(中国人 |zhong'guo'ren)
= P(中国人) *P(zhong'guo'ren| 中国人)
= P(中国)*P(人 | 中国)*P(zhong'guo| 中国)*P(ren| 人)
= 0.01 * 0.1 * 0.7 * 0.5
= 3.5*10^-4

Concrete Example(Cont.)

P(种果人 |zhong'guo'ren)
= P(种果人)*P(zhong'guo'ren| 种果人)
= P(种果)*P(人 | 种果)*P(zhong'guo| 种果)*P(ren| 人)
= 0.01 * 0.01 * 0.8 * 0.5
= 4.0*10^-5
< 3.5*10^-4 = P(中国人 |zhong'guo'ren)
So we will choose 中国人 as a result.

5. libpinyin - joint efforts

libpinyin - joint efforts

1. sunpinyin and novel-pinyin has been competing for 2-3
years.
2. when one input method finished some features, users will
request the other one to implement such features. Combines
the core part can save efforts to re-invent the wheels.
3. in the past two projects both have very limited developer
resources, merging the core part will greatly alleviate this
problem.

6. libpinyin - rational

libpinyin - rational

1. Unique library to process pinyin relative tasks for Chinese,
just likes libchewing, libanthy.
2. NLP-based approach which provides higher corrections
with reasonable speed and space cost.
3. Save efforts to avoid re-developing similar functionality
when need to deal with pinyin or other Chinese tasks, just
use libpinyin directly.

7. libpinyin roadmap

libpinyin roadmap

1. Compare features between ibus-pinyin, novel-pinyin
and sunpinyin, try to figure out the super set of features.
2. Discuss various possible implementations of each
component.
3. Pick up best component implementations from ibus-
pinyin, novel-pinyin and sunpinyin, different
implementations can co-exist.
4. Source code is compiling time configurable, by
specifying the needed flags when compiling, this library
can precisely simulates the behaviors of ibus-pinyin,
novel-pinyin or sunpinyin.
5. Merge source codes, and coding more...

8. libpinyin goals

libpinyin goals

1. Code must be easily maintainable.
2. Consistent interface between components, each component
can evolves independently.
3. Project code can make progress, without re-writing the entire
code base for brand new idea.
4. Ability to include new NLP models, and work seamless with
related components.
5. Consistent coding styles, and the most important thing is to
ease code reading.
6. For hard algorithms, better to write in a separate module,
instead to keep two similar algorithms together(eg, back-off and
interpolation), to ease code reading. Everything which makes
code ease to understand is welcome. :)

Q&A

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

